
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 294 (2006) 841–855

www.elsevier.com/locate/jsvi
Application of analytic wavelet transform to analysis
of highly impulsive noises

Xiangdong Zhu, Jay Kim�

Structural Dynamics Research Laboratories, Mechanical Engineering Department, University of Cincinnati,

Cincinnati, OH 45221-0072, USA

Received 9 February 2005; received in revised form 14 November 2005; accepted 12 December 2005

Available online 28 February 2006
Abstract

Time–frequency (T–F) domain analysis is necessary to characterize highly transient signals. The analytic wavelet

transform (AWT), which has features of both the Fourier transform and the wavelet transform, is advocated as an ideal

T–F signal analysis tool in this paper. Underlying theories and basic properties of the AWT are discussed in comparison

with a commonly used short-time Fourier transform (STFT) method. The AWT is set up specifically for acoustics

applications to describe T–F changes of the signal in sound pressure level, and applied to characterize two highly impulsive

sound signals. Comparing the results from the AWT and the STFT clearly demonstrates the advantage of the AWT, which

captures temporal and spectral characteristics of the signal in much more detail. A potential application of the AWT to

risk assessment of impulsive noise-induced hearing loss is discussed.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Characteristics of a transient signal should be described in the joint time–frequency (T–F) domain because
of spectral characteristics of the signal change with respect to time. The time history or the frequency spectrum
alone is not sufficient to understand transient signals. For example in music, the quantities which we perceive
as the ‘‘amplitude’’ and ‘‘frequency’’ both change as functions of time. In fact, time and frequency are not
separate but interwoven concepts in transient events [1]. Impulsive noises that arise in industrial or military
environments are also examples. The difficulty in assessing the risk of impulsive noises to human hearing loss
has been one of the major concerns of occupational health research [2], which may be partially attributed to
the lack of easily available, efficient T–F signal analysis methods.

The short-time Fourier transform (STFT) has been widely used for transient signal analysis, which is a
straightforward extension of the Fourier transform. The method essentially involves applying the Fourier
transform repeatedly, each time moving the time window [3]. A three-dimensional (3-D) representation of the
result of STFT is called water-fall plot, which many commercial signal analysis programs provide as a default
option. While its application is easy since the method is based on the Fourier transform, the STFT is a poor
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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choice for highly transient signals. Heisenberg’s principle [1] states that the spectral and temporal resolutions
of the T–F signal representation cannot be improved simultaneously. The STFT uses a single T–F atom in the
entire T–F domain [3]; therefore lacks the temporal resolution for high frequency (temporally fast)
components and lacks the spectral resolution for low frequency (temporally slow) components. In other
words, the STFT result always suffers from the lack of either temporal or spectral resolution [1,3].

The wavelet transform, a relatively new signal analysis method introduced in the 1970s [4,5], decomposes
signals using wavelets of variable scales, which are obtained by dilating and scaling the mother wavelet. The
main advantage of the wavelet transform stems from the fact that it uses variable scales, therefore variable
T–F resolutions. The transform with a small-scale wavelet uses a T–F atom short in time and wide in
frequency, thus picks up fast changing components efficiently, while the transform with a large-scale wavelet
uses a T–F atom long in time and narrow in frequency, thus picks up slowly changing components efficiently.

The wavelet analysis has found a broad range of applications such as signal compression, fault detection,
edge detection, and de-noising of signals [1]. However, it is interesting that the method has seldom been
applied to the quantitative analysis of transient signals, seemingly the most straightforward and natural
application of the method. This may have been caused by a reluctance of end-users due to the need to learn
new theories and concepts. As it will be shown in this paper, the analytic wavelet transform (AWT) provides a
perfect solution for this situation. At first, the information obtained from the AWT can be represented and
interpreted in exactly the same way as in the STFT. Secondly, the AWT process can be made numerically
nearly as efficient as the STFT if it is programmed properly. With the AWT setup in the way used in this
paper, end-users will not even notice the difference in using the AWT from using the STFT; the AWT just
provides much clearer information on T–F characteristics of the signal. It seems there simply is no reason not
to use the AWT over the STFT for transient signal analysis.
2. Brief theory of AWT

2.1. Analytic function

An analytic function f aðtÞ is a complex function whose Fourier transform has no components in the
negative frequency range [1]. The Fourier transform of its real part, f ¼ Re½f a�, is

f̂ ðoÞ ¼
f̂ aðoÞ þ f �að�oÞ

2
, (1)

where f̂ ðoÞ stands for the Fourier transform of f(t), * stands for the complex conjugate and Re stands for the
real part. This relation can be inverted to

f̂ aðoÞ ¼
2f̂ ðoÞ if oX0;

0 if oo0:

(
(2)

Therefore, the analytic part f aðtÞ of the signal f(t) is the inverse Fourier transform of f̂ aðoÞ defined
in Eq. (2).
2.2. Analytic wavelet transform

The mother wavelet of the AWT is defined as

cðtÞ ¼ gðtÞejZt, (3)

where j ¼
ffiffiffiffiffiffiffi
�1
p

, Z is a parameter that will be related to the frequency, and gðtÞ is a real-valued function such
that gðtÞ ! 0 as tj j ! 1. A Gaussian function is a popular choice for g(t), which is used in this work

gðtÞ ¼
1

ðs2pÞ1=4
e�t2=2s2 . (4)
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In Eq. (4), parameter s determines the shape of the function. The complex wavelet defined by Eqs. (3) and
(4) is called the Morlet wavelet [1].

The Fourier transforms of g(t) and cðtÞ are given as

ĝðoÞ ¼ ð4ps2Þ1=4e�s
2o2=2; ĉðoÞ ¼ ĝðo� ZÞ. (5,6)

Fig. 1 illustrates ĉðoÞ in relation to Z, which is obtained by shifting ĝðoÞ by Z to right. From Fig. 1, it is
known that the one-sided condition in Eq. (2) that an analytic function should satisfy will be satisfied
approximately if s2Z2b1 because ĝðo� ZÞ � 0 for oo0. Because ĉð0Þ ffi 0, the AWT also removes the
contribution of the DC component of the signal [6].

With the mother wavelet defined in Eq. (4), the AWT is defined as any other continuous wavelet transform
as follows:

W sðuÞ ¼ hf ðtÞ;cu;si ¼

Z 1
�1

f ðtÞ c�u;s dt, (7)

where hf ;cu;si stands for the scalar product. The family of wavelets cu;s is obtained by dilating and translating
the mother wavelet c:

cu;sðtÞ ¼
1

s
c

t� u

s

� �
, (8)

where s is the scale and u is the translation amount.
The wavelet defined in Eq. (8) has a constant area norm because

cu;sðtÞ
�� �� ¼ Z 1

�1

cu;sðtÞdt ¼

Z 1
�1

1

s
c

t� u

s

� �
dt ¼ cðtÞ

�� �� ¼ constant: (9)

Slightly different definitions can also be used. For example, wavelets defined as cu;sðtÞ ¼ ð1=
ffiffi
s
p
Þcðt� u=sÞ

will have a constant square norm. The AWT using the wavelet defined in Eq. (8) becomes similar to the
Fourier transform with a moving time window of variable window size.
2.3. Comparison of AWT to Fourier transform

The wavelet transform defined in Eq. (7) can be rewritten as

W sðuÞ ¼

Z 1
�1

f ðtÞ c�u;sðtÞ dt ¼

Z 1
�1

1

s
f ðtÞ g

t� u

s

� �
e�jZðt�u=sÞ dt. (10)

If we let t� ¼ t� u, Eq. (10) becomes

W sðuÞ ¼

Z 1
�1

f ðt� þ uÞ
1

s
g

t�

s

� �
e�jðZ=sÞt� dt�. (11)

The integration defined in Eq. (11) can be interpreted graphically as in Fig. 2. The illustration shows that the
AWT can be understood as a Fourier transform with a time window ð1=sÞgðt=sÞ located at t ¼ u. Comparing
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Fig. 2. Graphical interpretation of analytic wavelet transform.

X. Zhu, J. Kim / Journal of Sound and Vibration 294 (2006) 841–855844
the AWT defined in Eq. (11) with the Fourier transform equation, it is recognized that

o ¼
Z
s
. (12)

Therefore, the result of the AWT defined in Eq. (11) with given s and u is the frequency component of the
signal corresponding to o ¼ Z=s at the instant t ¼ u. The magnitude and argument of the component represent
the amplitude and phase of the component as in the Fourier transform. Repeating the integration over the
entire range of u finds the time history of the frequency component, which is actually done by a single
convolution integral (see Eq. (13)). The complete T–F description of the signal is obtained by conducting this
convolution integral over the range of scale that covers all the frequency of interest. Choice of g(t) determines
ĝðoÞ, thus determines the shape of the frequency filter of the AWT.

2.4. Numerical implementation of AWT

Because the Gaussian function used for g(t) is a symmetric function, Eq. (10) can be written in a convolution
integral form

W sðuÞ ¼

Z 1
�1

f ðtÞ
1

s
g

u� t

s

� �
ejZðu�t=sÞ dt ¼ convðf ðtÞ; hsðtÞÞ, (13)

where

hsðtÞ ¼
1

s
gðt=sÞejZðt=sÞ. (14)

Evaluation of the convolution integral defined in Eq. (13) for a given s results in the time series that
represents the signal components contained in the frequency range determined by ĝðoÞ centered at o ¼ Z=s.

The wavelet transform defined in Eq. (13) can be evaluated in a computationally efficient way by using the
convolution theorem in the frequency domain as follows:

F W sðuÞð Þ ¼ Ŵ sðoÞ ¼ f̂ ðoÞĥsðoÞ, (15)

where f̂ ðoÞ and ĥðoÞ are the Fourier transforms of f(t) and h(t). Therefore, the AWT result can be obtained by
the inverse Fourier transform of Ŵ sðoÞ:

W sðuÞ ¼ F�1ðf̂ ðoÞ ĥsðoÞÞ, (16)

where F�1 stands for the inverse Fourier transform. One can show that

ĥsðoÞ ¼
Z 1
�1

1

s
gðt=sÞejZðt=sÞe�jot dt ¼ ĝðZ� soÞ. (17)
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In the entire operation, ĝðoÞ has to be estimated only once. Then, ĥsðoÞ is found by simply substituting
Z� so into ĝðoÞ. Fourier transform is necessary only once in the entire AWT operation when f̂ ðoÞ is obtained.
At each scale of AWT operation, f̂ ðoÞ and ĝðso� ZÞ should be multiplied, thus a multiplication of two
vectors is required, and one inverse Fourier transform is required to be performed for F�1ðf̂ ðoÞ ĥsðoÞÞ. A
comparable STFT requires as many Fourier transforms as the number of time points to make the T–F plot.
Actual computational demands for the AWT and STFT vary depending on the number of scales and time
points used for the AWT and STFT; however, they are quite comparable, and certainly in the same order of
magnitude.
2.5. Selection of AWT parameters

As discussed before, the choice of ĥsðoÞ ¼ ĝðZ� soÞ dictates the frequency filter effect of the AWT.
Parameters of the Gaussian function g(t) can be chosen for a desired filter effect. In this work, g(t) is set up for
a 1/3 octave filter effect. With reference to Fig. 3 and Eq. (5), it is easy to show that

ĝðZ� soÞ ¼ ð4ps2Þ1=4 e�s
2ðZ�soÞ2=2. (18)

The center, lower limt and upper limt frequencies of the 1/3 octave filter are given as

oc ¼
Z
s
; ol ¼ 2�1=6oc; ou ¼ 21=6oc. (19)

The level difference between the center and lower frequencies is

DdBl ¼ 20 log10
gðZ� solÞ

gðZ� socÞ
¼ 20 log10

gðZ� solÞ

gð0Þ

¼ � 10s2Z2ð1� 2�1=6Þ2= loge 10: ð20Þ

Similarly the difference between the center frequency and the upper limit frequency is

DdBu ¼ �10s2Z2ð1� 21=6Þ2=loge 10: (21)

To make a 3 dB level drop at the upper and lower limit frequencies, it is known from Eqs. (20) or (21) that
Z and s have to be chosen so that s2Z2 ¼ 58. Adopting s ¼ 1, Z ¼ 7:6 has to be used. With this setup,
performing the AWT returns the amplitude of the signal components contained in the frequency range of the
1/3 octave band centered at oc ¼ Z=s.
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Fig. 3. Shape of the amplitude of wavelet function in the frequency domain.
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2.6. Time– frequency atom

According to Eqs. (13), (14) and (16), (17), it is recognized that the time and frequency filter sizes will be
proportional to ss and s=s, respectively, which define the T–F atom of the AWT. T–F atom may be
understood as the unit to break down the signal in the T–F domain [1]. The area of the T–F atom is obviously
constant, which is essentially the Heisenberg principle: the time and frequency resolutions cannot be improved
at the same time [1,3].

The STFT uses a single T–F atom in the entire T–F domain, whose time size is the length of the time
window and the frequency size is the inverse of the time window size. Therefore, STFT results always lack
temporal resolution for fast signal components and lack spectral resolution for slow signal components.
On the other hand, the T–F atom of the AWT is dependent on the scale s as it was discussed. As the scale s

decreases, both the center frequency (oc ¼ Z=s) and the frequency size of the T–F atom increase but the time
size of the atom decreases, which makes the wavelet transform ideal to pick up fast changing (i.e., high
frequency) components of the signal. As the scale s increases, the opposite occurs; the wavelet transform
becomes ideal to pick up slow-changing (i.e., low frequency) signal components. This is because the AWT uses
variable T–F atoms. The concept is illustrated in Fig. 4 [1].

3. Test cases for AWT

The AWT is applied to two test cases. The test signals are a sine function and a time-domain Dirac delta
function. The T–F representations of these signals are known in exact forms.

3.1. A sine signal with a constant frequency

A time domain function f ¼ 5 sinð40ptÞ is considered. Fig. 5(a) show the representation obtained by the
AWT, and Fig. 5(b) is a view at the plot in Fig. 5(a) from the frequency side. Obviously, the exact
representation of the amplitude of the signal in the T–F domain is a vertical wall with height 5 that runs in
parallel with the time-axis and intersects the frequency axis at 20Hz. The figures show the AWT approxi-
mates the exact representations very well; the signal is a dispersed form of the exact representation. The
curve in Fig. 5(b) is actually the flipped shape of ĝsðoÞ located at 20Hz. Fig. 5(c) shows the real and
imaginary parts of the AWT result, which resemble 5 sinð40ptÞ and �5 cosð40ptÞ, respectively. Fig. 5(d)
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Fig. 5. AWT results of known signals: (a) amplitude of f ¼ 5 sinð40ptÞ; (b) amplitude of f ¼ 5 sinð40ptÞ, viewed from the frequency side;

(c) real part of f ¼ 5 sinð40ptÞ; (d) imaginary part of 5 sin(40pt); and (e) phase plot of (5 sin 40pt� 5 cos 40pt).
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plots the phase difference of f 1ðtÞ ¼ 5 sinð40ptÞ and f 2ðtÞ ¼ 5 cosð40ptÞ captured by the AWT,
which is approximately 901 as it should. This shows that the phase information is also calculated correctly
the AWT.
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Fig. 6. Amplitude of the signal f ðtÞ ¼ dðt� 1:5Þ captured by the AWT.
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3.2. A Dirac delta function

As the next test case, a time-domain Dirac delta function is considered, which is

f ðtÞ ¼ 5 dðt� 1:5Þ. (22)

Fig. 6 shows the amplitude plot of the signal in the T–F domain obtained by the AWT.
The exact T–F domain representation is a vertical wall located at t ¼ 1.5 s whose height increases linearly as

the frequency increases. The height increase is due to the use of the 1/3 octave band for the frequency axis,
whose band-width increases as the frequency increases. Fig. 6 shows that the AWT result represents the Dirac
delta function, an ultimate transient function, very nicely.

4. Application of the AWT to impulse sound signals

Characterization of impulsive noise has been one of major difficulties in the study of noise-induced hearing loss
(NIHL), a common occupational disease among industrial workers and military personnel. Current guidelines
pertaining to NIHL developed by various organizations such as ISO [7] and the National Institute for
Occupational Safety and Health (NIOSH) [8] generally are based on the equal-energy-hypothesis (EEH), a steady-
state concept. The practices are based on the premise that the same amount of sound energy will produce the same
amount of hearing impairment regardless of how the sound energy is distributed in time [7,9]. However, there is
abundant evidence from various clinical and animal model studies, which argue against such a straightforward
extension of the EEH to impulsive noise [10–12]. One of the main difficulties in assessing exposure risk to
impulsive noise is the quantitative characterization of the noise. An impulse noise is characterized by its peak level,
rise and decay times, which are time domain properties. Spectral characteristics of the noise have been considered
additionally, but not in any manner related to the temporal characteristics. A highly transient event such as
impulsive noise should be characterized in the joint T–F, for which the AWT becomes a perfect solution.

4.1. AWT for sound analysis

As mentioned, the AWT in this work is set up to obtain the complex amplitude that represents the signal
components contained in the 1/3 octave band located at oc ¼ Z=s. If the sound pressure signal is in Pa, it can
be represented in the sound pressure level (SPL) as

SPLðuÞs ¼ 10 log10
W sðuÞW sðuÞ

�

2P2
ref

 !
, (23)

where Pref ¼ 20� 10�6 Pa. This way, T–F plots can be made in terms of the SPL.
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5. Sound from impact power wrench

Fig. 7 shows the time history of the sound generated by an impact power wrench, which was measured at
the operator’s ear position for a duration of 0.1 s [13]. The sampling rate of 40,000Hz was used, which
corresponds to the Nyquist frequency of 20,000Hz. Operation of the tool involves very rapid metal-to-metal
impacts, which create a train of highly impulsive sounds occurring nearly 50 times per 1 s, each time reaching
an instantaneous SPL of nearly 120 dB.

5.1. T–F characterization by STFT

Fig. 8 shows the T–F plot obtained from the STFT of the signal shown in Fig. 7. A time window of 0.02 s
size is used for each Fourier transform, which results in the frequency resolution of 50Hz. About 50%
overlapping is used; therefore the window is moved by 0.01 s for each FFT. A-weighting is applied to each
spectrum PðoÞ to convert the SPL to dBA.

Since the frequency resolution is Df ¼ 1=T , the resolution can be improved by increasing the time window
size T, which however decreases the temporal resolution of the T–F data. Using a shorter time window,
decreasing T, will improve the temporal resolution; however it will decrease the frequency resolution. In fact,
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Fig. 7. Time history of the sound from an impact power wrench.

Fig. 8. Time–frequency plot of the SPL of the impact power wrench obtained by STFT.
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Fig. 8 was obtained as a best compromise after several trial-and-errors. The limitation of the STFT is obvious
from Fig. 8. For example, the maximum SPL of the T–F plot is obtained as only 87 dBA at 10,000Hz, which is
significantly lowered by the averaging effect due to the 0.02 s time window, a very long time for such a fast
signal.

5.2. T–F characterization by AWT

Fig. 9 is the T–F plot obtained by applying the AWT to the same signal shown in Fig. 7. The AWT result is
converted to the SPL by using Eq. (23), which is then converted to dBA by applying A-weighting.
Improvement in the T–F resolution from the STFT is remarkable when Fig. 9 is compared with Fig. 8. The
highest SPL is now obtained as 105 dB at 8000Hz 1/3 octave band. Characteristics of the impact noise are well
reflected by the relatively flat shape of the surface in the direction of time.

The T–F plot in Fig. 9 can be improved by interlacing the frequency plots, which can be done by estimating
the AWT at every 1/12 octave points. This provides four intermediate frequency points to the plot in Fig. 9,
which makes the surface smoother. The AWT plot obtained as such is shown in Fig. 10. This scheme is used
for all subsequent plots.
Fig. 9. Time–frequency plot of the SPL of the impact power wrench obtained by AWT.

Fig. 10. Time–frequency plot of the SPL of the impact power wrench obtained by AWT using more frequency points.
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As illustrated in Fig. 10, the frequency axis of the AWT may be related to the positions of the basilar
membrane because 1/3 octave frequencies match with critical bands in a wide range of frequency. Therefore,
the curve obtained by cutting the T–F characteristic surface to the time axis direction at a given frequency may
be considered as the time history of the stimulus felt by the basilar membrane at the corresponding position.
Also, the curve obtained by cutting the surface to the frequency direction at a given time may be interpreted as
a snap shot of the basilar membrane displacement. Employing the 1/3 octave band makes use of the effective
averaging time of the auditory system as the time constant, thus makes good sense for hearing research
purpose. Used this way, the AWT can be very useful for correlation study of the hearing loss and noise
characteristics.

5.3. 1/3 octave time histories

The AWT obtained by Eq. (13) is actually the time history of the sound power contained in the 1/3 octave
band of center frequency Z=s. Fig. 11 shows six 1/3 octave time histories at 0.5, 1, 2, 4, 8 and 16 kHz. It is seen
that the time history changes faster at higher frequencies as time atom becomes smaller. These transient 1/3
octave band time histories are new concepts that may have various applications. Six 1/3 octave bands from the
STFT are shown in Fig. 12, which are obtained by adding all the frequency components in the respective 1/3
octave band. For example, the 1000Hz 1/3 octave band, which is between 890 and 1125Hz, is obtained by
summing 900, 950, 1000, 1050 and 1100Hz components of the frequency components calculated by STFT

SPL1000 Hz ¼ 10 log10
X6
i¼1

10SPLi=10

 !
. (24)

Fig. 12 shows that the STFT has the same temporal resolution at all frequencies; therefore the resolution
obviously becomes insufficient at high frequencies.

5.4. Airbag deployment sound

The noise generated by deployment of automotive airbags can cause serious damage to auditory systems
[14,15]. Fig. 13 shows a measured time-history of the airbag sound downloaded from the Army Research Lab
website [14]. The instantaneous SPL of the sound reaches to nearly 6000 Pa (170 dB).
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Fig. 11. 1/3 octave time histories of the impact power wrench noise obtained by AWT: (a) 500Hz band, (b) 1000Hz band, (c) 2000Hz

band, (d) 4000Hz band, (e) 8000Hz band, and (f) 16,000Hz band.
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Fig. 13. Time history of the noise from deployment of an airbag.
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Figs. 14 and 15 are T–F plots of the sound obtained from the STFT and AWT, respectively. Again, the
AWT result shows much clearer, detailed information. Fig. 16 shows time histories of the 1/3 octave band
SPLs at 125, 250, 500, 1000, 2000 and 4000Hz obtained from the AWT. The 2000Hz band shows the highest
instantaneous pressure, which reaches nearly to 160 dBA. This indicates that a more detailed study will be
necessary around the location in the auditory organ corresponding to this frequency. 1/3 octave time histories
obtained from the STFT result are shown in Fig. 17, which again does not have sufficient temporal
resolutions. Because the frequency resolution of the STFT was 50Hz, the 1/3 octave band at 125Hz did not
include any frequency components, thus resulted in a blank plot.

6. Conclusion and discussions

Analytic wavelet transform (AWT) is advocated as a much superior alternative to the STFT for transient
signal analysis in this paper. The underlying theory of the AWT is discussed in relation to the Fourier
transform, which helps understanding basic properties and unique characteristics of the AWT. It is shown that



ARTICLE IN PRESS

Fig. 15. Time–frequency plot of the airbag noise by AWT.
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Fig. 16. 1/3 octave band SPL time histories of the airbag noise obtained by AWT: (a) 500Hz band, (b) 1000Hz band, (c) 2000Hz band,

(d) 4000Hz band, (e) 8000Hz band, and (f) 16,000Hz band.

Fig. 14. Time–frequency plot of the airbag noise by STFT.
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the AWT may be considered as a transient version of the Fourier transform because it finds both the
magnitude and phase of frequency components of the signal as functions of time. Basic properties of the AWT
are observed by applying it to two sets of test signals, a sine wave and a Dirac delta function, whose T–F

representations are known in exact form.
After setting up the AWT as a transient 1/3 octave analyzer, the AWT is applied to two highly impulsive

acoustic signals: an impact wrench noise and an airbag deployment noise. The AWT results are presented in
the T–F domain in terms of the sound pressure level (SPL) in dBA. Comparison of the results with those
obtained from the STFT clearly shows the main advantage of the AWT over the STFT in capturing detailed
T–F characteristics of the signal. The transient 1/3 octave time history is introduced as a new concept, which is
potentially very useful for risk assessment of impulse noise-induced hearing loss (NIHL).

With the set-up used in this work, the end users can use the AWT and interpret the result exactly in the same
way as they have been doing with the STFT. End-users who have been using the STFT can use the AWT
without noticing any difference while obtaining much more detailed T–F characteristics of the signal.
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